Club of Amsterdam, Future, Think Tank ..

Club of Amsterdam Journal
Free Subscription
click here

























































































































keyword search

TOC and TRIZ: Using a dual-methodological approach to solve a forest
Average reader rating: 0  
by Ian Conradie, Ingeser Consultores, Triz-Journal 26 Futurist Tools


Although cut-to-length forest harvesting with harvesters and forwarders is hardly used in some parts of the world, it has many advantages over conventional harvesting systems. Research has shown that the core reason for the low adoption of CTL in the southeastern USA is the complexity of the equipment to optimize value recovery. In this paper we delve deeper into this problem by investigating the technical and physical contradictions responsible for this situation. A dual-methodological approach was followed to analyze and solve the problem using the Theory of Constraints (TOC) and the Theory of Inventive Problem Solving (TRIZ). A solution is to apply one of the innovative principles of TRIZ: Mechanics substitution. We believe that this dual-methodological approach can be used to great effect to solve many more technical and non-technical forest operations or other problems.



We have shown how TRIZ and TOC can be combined to systematically find solutions to engineering problems – finding a solution is not longer a question of luck or trial and error. By reducing trial and error approaches to product design it is possible to reduce product development time and control development costs – both being necessary conditions to stay ahead of the competition in today’s competitive forest equipment market. A systematic process, without compromise, also opens the door for breakthrough, quantum leap improvements – not the normal incremental improvements we are accustomed to. Nicholas Negreponte from the MIT Media Lab states that incrementalism is innovation’s worse enemy [34].

We identified that replacing the mechanical measuring system with sensors/fields as the mostly likely means to solve the conflicts. Some readers may be saying yes but at this point in time and asking, “..what about possible negative effects?” or “How can we overcome obstacles to put the idea in practice?” TOC also has tools to manage this process: The Negative Branch Reservation process and the Future Reality Tree are TOC tools to test a solution and trim any possible negative effects that could be forthcoming, while the Prerequisite Tree and Transition Tree are useful in identifying obstacles to implementation and developing project plans.

Over the last decade the forest industry has mainly been taking actions to improve measurement accuracy and productivity of harvesters incrementally (i.e. move the diameter measurement from the debarking knives to the feed rollers, find ways for the length measurement wheel to follow the contours of the stem better, find better ways to hold the stem in the feed rollers, increase the power in the feed rollers, use chains or spikes on the feed rollers for better grip, etc.). Some also see an investment in operator training as a simpler and more effective way to improve value recovery than investing in technology [3]. The abilities of operators to handle fast feeding speeds where complex log specifications are used is already limited at speeds of 4m/s. The learning curve for operators is also long (could be years). According to Murphy and Marshall [3] improving tree-form models are one of the ways being used to increased the accuracy of the measuring system but it does not work well in many cases. Other ways of improving value recovery is to use different combinations of how much of the stem is measured and how much is forecasted. Simulations have shown that value recovery can be increase but the draw-back is lower productivity [3].

Recently, a company in New Zealand developed a system that uses a non-mechanical means (lasers) to make length, diameter and sweep measurements. This system can scan and calculate the optimum cutting pattern in seconds. However, it is a separate unit used on the landing with a conventional (not a CTL) harvesting system – they did not incorporate the technology into the harvester head of the harvester. The information is transferred from the scanning unit to an excavator with a processor head that cut the stem into logs. This system does not automatically measure external defects (knots, rot, etc.) or cut the stem into logs. Another product has been developed in New Zealand that uses sound to identify internal (not external) defects. It has not been incorporated into a harvester head either. Optical equipment has also been used to identify defects.

In our opinion we need to investigate how measurements are done with sensors/fields in other industries and adapt it to forestry. TRIZ research has shown that innovations frequently use scientific effects outside of the field where they were developed (i.e. GPS and central-tire inflation used in forest operations were originally military applications). Brink [6] indicated that the worldwide trend is to replace tree-length with CTL systems – indeed a great economic incentive to solve the problem.

For people familiar with TOC it might be interesting to see that the CRD (Conflict Resolution Diagram) can also be used to solve technical contradictions as it is normally used to solve non-technical conflicts [15]. Many authors have shown that TRIZ can also be applied with equal effectiveness to a non-technical problem, although that was not the purpose of its inventor. In recent times TRIZ has been applied more and more to non-technical areas too. It is interesting to note that the inventors of both theories are scientists!

Download this article as *.pdf: click here

You can find more about 'the future of Futurist Tools' in the Articles , Books and Links section. section.

Rated 0 by other users. What do you think? [rate this article]

Copyright © 2002-2020 Club of Amsterdam. All rights reserved.    Contact     Privacy statement    Cancellation Policy